SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK

Subject with Code : <u>Advanced Computer Architecture (16EC5503)</u>

Course & Branch: M.Tech – (VLSI,DECS) Year & Sem: I-M.Tech & I-Sem

<u>UNIT –I</u>

1. a) Discuss the technology trends of computers.	[5M]
b) Explain the methods of system design cost measuring.	[5M]
2. a) Explain the concept of speed of hardware and its cost.	[5M]
b) Write a short note on fundamentals of a computer design. Explain in detail the quaprinciples of computer design	entitative [5M]
3. a) Explain how the performance is measured for system.	[5M]
b) List the different programs for performance calculations	[5M]
4. a) Explain how Amdahl's law is useful for measurement of improved performance o systems	f computer [5M]
b) Discuss the CPU performance equation	[5M]
5. a) Classify the instruction set architecture	[2M]
b) Explain different instruction set architectures.	[8M]
6. a) What is addressing mode	[2M]
b) Explain different addressing modes	[8M]
7. a) Which type of addressing mode is used for signal processing.	[5M]
b) List different types of operands	[5M]
8. a) Give different sizes of operands used in processors.	[2M]
b) Explain various operations in the instruction set.	[8M]
9. a) Discuss different control flow instructions.	[5M]
b) How the encoding of an instruction is done in processors.	[5M]

QUESTION BANK	2016
---------------	------

10. a) Distinguish between RISC and CISC instruction set	[5M]
b) Explain the roll of compilers.	[5M]

Prepared By: M.Janardhana Raju

<u>UNIT-II</u>

1. a) What is pipelining and parallel processing.	[5M]
b) Explain instruction level parallelism.	[5M]
2. a) List different data dependences	[2M]
b) Explain data hazards	[8M]
3. Explain data hazards overcoming with dynamic scheduling with suitable example	[10 M]
4. a) Give the details of different control dependences.	[5M]
b) Explain different branch cost reduction schemes.	[5M]
5. a) Explain how to achieve more ILP using multiple issues.	[5M]
b) List different limitations of ILP.	[5M]
6. a) Explain hardware based speculation.	[5M]
b) Give the details of static branch prediction	[5M]
7. Explain different compiler techniques for exposing ILP.	[10M]
8. a) Discuss performance issues and applications of pipelines	[5M]
b) Write short notes on VLIW approach.	[5M]
9. Explain different hardware support for achieving more parallelism at compile time	[10M]
10. a) Explain briefly about detecting and exhausting loop level parallism.	[5M]
b) Differentiate hardware versus software approach of ILP.	[5M]

Prepared By: M.Janardhana Raju

<u>UNIT-III</u>

1. a) What is cache memory.	[2M]
b) Draw and discuss typical memory hierarchy structure in computers.	[8M]
2. a) Define cache miss and cache hit.	[2M]
b) Give the details of cache performance equation.	[8M]
3. a) What are the two methods of writing to cache.	[2M]
b) How the memory blocks are filed in cache memory from main memory.	[8M]
4. a) Explain how to reduce the miss rate in cache memories.	[5M]
b) What are the problems associated with multi cache? Suggest suitable solutions	[5M]
5. a) What is miss penalty	[2M]
b) Explain the different ways of reducing cache miss penalty.	[8M]
6. a) Give the reasons why cache coherence is an accepted requirement in small scale multiprocessors.	[5M]
b) Draw the state transition diagram for an individual cache block in a directory based	system.[5M]
.7. a) Explain the concept of virtual memory.	[5M]
b) What is virtual address and physical address.	[5M]
8. a) What is the function of TLB.	[2M]
b) Explain the process of protection of virtual memory is achieved.	[8M]
9. a) How to evaluate the performance of symmetric shared memory multiprocessors.	[2M]
b) Explain symmetric and shred memory architectures.	[8M]
10. a) Explain hardware primitives for synchronization.	[5M]
b) Discuss any two multi – threaded models.	[5M]

Prepared By: M.Janardhana Raju